
PHYSICAL REVIEW E MAY 1997VOLUME 55, NUMBER 5
Coexisting attractors in compressible Rayleigh-Be´nard flow

V. M. Castillo, Wm. G. Hoover, and C. G. Hoover
Department of Applied Science, University of California at Davis-Livermore, Livermore, California 94551-7808

and Lawrence Livermore National Laboratory, Livermore, California 94551-7808
~Received 10 December 1996!

We demonstrate that precise solutions of the convective flow equations for a compressible conducting
viscous fluid can give degenerate stationary states. That is, two or more completely different stable flows can
result for fixed stationary boundary conditions. We characterize these complex flows with finite-difference,
smooth-particle methods, and high-order implicit methods. The fluids treated here are viscous conducting
gases, enclosed by thermal boundaries in a gravitational field—the ‘‘Rayleigh-Be´nard problem.’’ Degenerate
solutions occur in both two- and three-dimensional simulations. This coexistence of solutions is a macroscopic
manifestation of the strange attractors seen in atomistic systems far from equilibrium.
@S1063-651X~97!04405-X#

PACS number~s!: 47.20.Bp, 47.27.Te, 05.45.1b, 05.70.Ln
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I. INTRODUCTION

Computer experiments, both microscopic and mac
scopic, are now sufficiently detailed to compete with re
laboratory experiments as sources of reliable data. Comp
techniques include atomistic molecular dynamics@1–3#,
finite-difference@3# and finite-element methods@4#, particle
techniques@4,5#, and higher-order implicit methods@6# for
solving the partial differential equations of continuum m
chanics. Intercomparisons of all these approaches mak
possible to study the limiting convergence of the numeri
techniques as the number of degrees of freedom is increa
as well as the corresponding consistency and agreem
among the various atomistic and continuum approaches@7#.
An interesting aspect of this comparison, which we emp
size here, is the coexistence of independent stationary s
tions of the continuum fluid equations. For solids such
thing is no surpise, for solids have no way to forget their p
history. But for fluids this lack of uniqueness is a bit uns
tling. This coexistence of macroscopic hydrodynamic flo
solutions is reminiscent of the complex Kolmogorov-Arnol
Moser~KAM ! behavior seen in the dynamics of smooth ch
otic Hamiltonian systems with only a few degrees of fre
dom, though again, the KAM behavior seems a m
appropriate model for solids than for fluids.

The simplest continuum flow problems are the prototyp
which define the shear and bulk viscosities and thermal c
ductivity. Next in complexity is the convective instability o
a compressible fluid conducting heat in a gravitational fie
‘‘Rayleigh-Bénard’’ instability @1–4,8,9#. See Fig. 1. Suffi-
ciently close to equilibrium, the hot lower boundary and t
cold upper one promote Fourier heat conduction with
convection. At a sufficiently high Rayleigh number, 1708 f
an incompressible Boussinesq fluid@9#, stable convection
patterns develop for the geometry shown in the figure. In
cases discussed here, these are sets of parallel cylind
rolls. With different boundary conditions hexagonal cells c
also be observed@9#.

A convective instability in the quiescent fluid leads to
steady flow just above the critical Rayleigh number. Close
the motion threshhold, such a closed stationary flow is ar
551063-651X/97/55~5!/5546~5!/$10.00
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ably the simplest type of nonequilibrium flow state. Su
stationary flows can be characterized, for idealized sit
tions, close to equilibrium, by linearizing the hydrodynam
equations relative to the quiescent purely conducting s
@3,9#. Lorenz’s caricature of Rayleigh-Be´nard flow @10# de-
scribes not only the stationary roll structure, but also
transition to chaos, which occurs under more extreme co
tions. Here we describe results found in our use of
Rayleigh-Bénard problem as a test for various alternati
numerical approaches to compressible flow problems.

In the course of our investigations we found that solutio
of the full set of continuum equations can be degenerate o
a wide range of conditions. We first discovered the coex
ence of two stable stationary flows, for the same bound
conditions, by accident, watching both develop from ‘‘ra
dom’’ initial conditions. Thus the computational situation
not so different from the experimental one, in which ro
patterns have been observed to change on a time sca
days. Of the three flows shown in Fig. 1, the two-roll flow
a box of aspect ratio 2 is very well known. The incompre
ible approximation to this case has been exhaustively
cussed by Chandrasekhar@9# and Busse@11#.

Busse went on to explore the stability of roll patterns
various wave numbersa, wherea5p corresponds to the
two-roll pattern. The ‘‘Busse Bubble’’ refers to the region
wave number–Rayleigh number space for which roll patte
are stable. This stability region is centered neara5p but
covers a range so small as to suggest that the four-roll
tern,a52p, is not stable at any Rayleigh number. Puhl a
co-workers@3# presented work based on a finite-differen
model of the compressible hydrodynamics equations that
dicated that both one- and two-roll solutions can coexist
the same system. Additionally, they used a stability mo
based on the linearized hydrodynamic equations to sup
the existence of one-, two-, and three-roll patterns for a s
tem with an aspect ratio equal to 2. This was for a box w
four rigid sides and stress-free boundaries~otherwise odd
numbers of rolls would not be possible!.

Unlike Busse’s incompressible flows, the present wo
uses a fully compressible model, a natural choice for
study of buoyancy-driven convection. The results discus
5546 © 1997 The American Physical Society
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55 5547COEXISTING ATTRACTORS IN COMPRESSIBLE . . .
in this paper correspond to wave numbers of$p,2p,3p%. In
testing the robust nature of the two-roll solution, we we
surprised to find that a four-roll solution would sometim
appear. Further testing showed that four-roll solutions p
sist, as do the two-roll ones, as the number of degree
freedom describing the system is made arbitrarily large~at
fixed Rayleigh and Prandtl numbers! for times greater than
104 sound-traversal times. In addition to showing that the
patterns exist for long times, we quantitatively character
for all the patterns, the internal energy per unit mass, the
flux, and the apparent linear growth rate associated w
them. We extrapolated all these results to the continu
limit.

In three dimensions we found two rolls forming in a d
agonal orientation, corresponding to a roll width interme
ate between the two-roll and four-roll cases. There is als
fairly long-lived six-roll solution, still with exactly the sam
boundary conditions. See again Fig. 1. This six-roll solut
is stable to a catastrophe time equal to 470 sound-trave
times, after which the system evolves to either a two-
four-roll pattern. The apparent unpredictability of the fin

FIG. 1. Two-roll, four-roll, and six-roll stationary flows for a
two-dimensional ideal gas with Ra540 000 and Prandtl numbe
unity. Fully stationary two-roll solutions and four-roll solution
were obtained for meshes with 36318, 72336, and 144372 nodes.
The larger meshes show also six-roll solutions.
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state suggests a complicated, fractal, boundary separa
these attracting states. Additionally, persisting nonstation
mixed-mode limit cycles have been observed to form a
the catastrophe. Similar results hold in two and three dim
sions, though comprehensive tests of the numerical stab
in the latter case would severely strain the limits of curre
computers. Here we describe the methods used to ob
these solutions and present evidence that degenerate
pressible solutions persist in the continuum limit. Finally, w
comment on some conclusions to which this work leads.

II. FINITE-DIFFERENCE SOLUTIONS

The continuum equations for the time development of
density, velocity, and energy per unit mass$r,v,e% can be
written in terms of the ‘‘Eulerian’’ derivatives at fixed spac
locations:

~]r/]t !52“•~rv !,

~]v/]t !52v•“v1~1/r!“•s1g,

~]e/]t !52v•“e1~1/r!@“v:s2¹•Q#.

It is convenient to evaluate the spatial derivatives at eit
the nodes or the cell centers of a regular square or cubic
in such a way that the errors in these derivatives are sec
order in the grid spacing. This suggests, and our numer
results confirm, that errors in global averages will vary
versely with the number of grid points used. We investiga
other higher-order methods such as a fourth-order P´
method for determining the local gradients and extrapola
values@6#. Another method investigated uses cubic splines
interpolate the state variables and determine the local gr
ents. This method can be shown to have errors less than
fourth power of the mesh spacing when periodic bounda
are used, but suffers a significant loss in accuracy, as do
Padémethods, near the fixed boundaries. Additionally, wh
the conservative form of the differential equations is us
these higher-order methods are not conservative near fi
boundaries.

All the spatial gradients which are required for the co
tinuum equations can be expressed as centered differenc
nearby nodal or cell values. The temperatures and veloc
at the top and bottom boundary nodes are held fixed w
the vertical boundaries are periodic. A workable scheme
sults @3# if nodal values of the velocity and energy and ce
centered values of density, stress tensor, and heat flux ve
are used. Even with a regular Cartesian grid, there are s
ambiguities in converting those terms involving boths and
r into finite-difference forms. For example, such an ambig
ous term is required for a centered-difference representa
of the rate at which thermodynamic work is done:

~]e/]t !work5~1/r!¹v:s.

In a detailed comparison of two different approaches to
two-dimensional flow equations we found that averaging
complete right-hand side at the four cell centers surround
a node leads to somewhat smoother convergence to the
tinuum limit than does an alternative scheme in which“v
and (s/r) are averaged separately.
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At a Rayleigh number of 2500 we compared all of t
eight schemes which can be generated by averaging the
merators and denominators in each of the three ambigu
terms, combined and separately. The best combination
terms of showing the least dependence—about one-third
than the worst of the eight combinations—of the total kine
energy on the number of grid points, used the following lo
averages in evaluating the time derivatives of velocity a
energy:

^¹•s&/^r&, ^~¹v:s!/r&, ^~¹•Q!/r&.

The centered differences in space, averaged as just
scribed, result in ordinary differential equations, f
$dv/dt,de/dt% at the nodes and$dr/dt% at the cell centers
These differential equations can be conveniently and ea
solved, for tens of thousands of nodes and millions of ti
steps, with the classic fourth-order Runge-Kutta method.
scheme conserves mass exactly.

In all of our work here, both in two and in three dime
sions, we use the ideal-gas mechanical equation of s
P5rkT, wherek is Boltzmann’s constant per unit mass. F
simplicity, we use constant transport coefficients, with
Prandtl number of unity. By additionally choosing the gra
tational field strengthg consistent with constant density i
the convection-free solution,g5kDT/H, and with a bottom-
to-top temperature difference equal to its mean, the solut
can all be characterized by the dimensionless Rayleigh n
ber,

Ra[gH3/~nDT![kDT~H/n!~H/DT!,

whereg is the gravitational acceleration. The system hei
is H; the width isW52H; n andDT are the kinematic vis-
cosity and thermal diffusivity,n5h/r and DT5k/(rcV).
We used a variety of initial conditions. If the nodal velociti
are chosen randomly the corresponding kinetic energy
out rapidly except for one or more unstable modes, wh
grow and lead to a finite-amplitude stationary state, of
type shown in Fig. 1. Solutions with a particular desir
symmetry can be constrained to retain that symmetry in
velocity field until the other state variables converge su
that fluctuations from the stationary state become num
cally insignificant. Then, the constraints can be released,
the sensitivity to computational noise studied. By study
the mesh dependence of this sensitivity we found a variet
stable solutions, some of which are shown in Fig. 1.

Nodal velocities for typical solutions are plotted in Fig.
for a Rayleigh number of 40 000, about 23 times the criti
value for two-roll convection. These solutions exhibit dev
tions from the fully converged continuum limit which var
smoothly with the mesh spacing, evidently as the inve
of the number of cells. Either extrapolation or the use o
relatively large number of grid points makes accur
results possible. We have based our tabulated results
series of simulations using 2H2 cells, mostly with
H5$36,48,60,72%. See Table I.

For the three states shown in Fig. 1 we have estima
extrapolated continuum values for the horizontal and vert
kinetic energies, and the internal energy, per unit mass,
heat flux, and the apparent linear growth rate associated
the three types of roll patterns.
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The last two points require further discussion. In the s
tionary state, the horizontal average of the vertical ene
flow must be constant, independent of the verticaly coordi-
nate and equal to the rate at which heat enters~and exits! the
system through the bottom~and top! boundaries. The aver
aged flow, including convection, but equal to the heat flux
the boundary can be computed as follows:

Qboundary5^Qy1Pxyvx1Pyyvy1rvy@e1~v2/2!#&.

Numerical estimates are included in Table I.
The linear growth rate of the rolls’ kinetic energy is a

curately proportional to 1/W, and shows relatively little ad-
ditional size dependence. Rates were estimated by first
termining the stationary roll-state deviations from t
quiescent state. The deviations, multiplied by a small nu
ber, were then used to perturb an otherwise quiescent in
state. Growth rates could be obtained in this way with unc
tainties of 1% or 2%.

Using this problem to test various numerical methods,
were able to confirm the reproducibility of the results a
also reproduced some sample results given in Ref.@6#.
Though the programs differed slightly for finite meshes, d
to the ambiguities in differencing, as mentioned above,
independent programs agreed at the level of the results g
in Table I. In appropriate special cases our two- and thr
dimensional programs agreed to the full 64-bit precis
used in these simulations.

III. COMPARISON OF TWO- AND THREE-DIMENSIONAL
SOLUTIONS

The extension of the two-dimensional calculations
three dimensions is relatively straightforward. We use
same mechanical equation of state as in two dimensions,
the same thermal equation of state,e5kT. The thermal dif-
fusivity is also defined in the same way, and has the sa
numerical value in both cases. The viscosities require adj
ment. Because, in three dimensions, a fluid without bulk v
cosity is arguably the simplest, we adopt that choice in th
dimensions, with the following constitutive equation:

TABLE I. The horizontal and vertical contributions to the k
netic energy per unit mass, the internal energy per unit mass
boundary heat flux, and the small-amplitude growth rate of the
netic energy, multiplied by the system widthW, are given for a
series of fully converged solutions at a Rayleigh number of 40 0
Two-roll, four-roll, and six-roll solutions are compared.W52H.
N52H2. In the continuum limit energies vary asN, traversal times,
diffusion times, and dissipation rates asN1/2}H.

Rolls Kx /Nm Ky /Nm E/Nm Qboundary W/t

2 0.003730 0.00357 1.014 0.0120 1.42
4 0.001139 0.00410 1.018 0.0118 1.70
6 0.000274 0.00226 1.012 0.0106 1.25
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sxx5seq~r,e!1h@~4/3!ėxx2~2/3!ėyy2~2/3!ėzz#

10@ ėxx1 ėyy1 ėzz#, sxy5hėxy .

The coefficients~4/3! and~2/3! do not correspond exactly t
a two-dimensional ideal gas with only shear viscosity. In t
dimensions a fluid with no bulk viscosity has the followin
constitutive relation:

sxx5seq~r,e!1h@ėxx2 ėyy#10@ ėxx1 ėyy#, sxy5hėxy .

The two-dimensional fluid requires an additional bulk v
cosity, equal to one-third the shear viscosity, in order to c
respond to the three-dimensional constitutive relation:

hv5h/3⇒sxx5seq1h@~4/3!ėxx2~2/3!ėyy#,

sxy5hėxy .

The numerical effect of adding the bulk viscosity in the tw
dimensional simulations is typically quite small. In an ide
gas simulation of Rayleigh-Be´nard flow, at a Rayleigh num
ber of 3600, the flow velocity increased by about one par
1000 when the two-dimensional bulk viscosity was set eq
to zero rather than toh/3. It is interesting, and possibly sig
nificant, that taking a two-dimensional reference system w
vanishing bulk viscosity would require a negative bulk v
cosity in three dimensions, leading to catastrophic instab
ties.

We verified that the stationary two- and four-roll solutio
from the two-dimensional work furnish stationary thre
dimensional flows. This was done by using rounded-off tw
dimensional solutions as initial states for three-dimensio
simulations using a cubic grid. Thus the generality of o
findings is not at all restricted to the two-dimensional cas

We have also investigated similar roll-type flows wi
smooth-particle applied mechanics~SPAM! @4,5,8#. The
three-dimensional SPAM work reported here is new. T
smooth-particle results are more complex, because
SPAM simulations, like molecular dynamics, fluctuate fo
ever, and cannot reach true stationary states. In many s
tions the convective rolls and cells can come and go,
change orientation, in times which are quite long relative t
typical roll rotation time. A typical three-dimensional two
roll pattern, also for a Rayleigh number of 40 000, and
same constitutive model, is shown in Fig. 2. Though
stability of such two-roll patterns is well known in simula
tions, with both molecular dynamics@1,2# and smooth-
particle applied mechanics@8#, the four-roll and six-roll so-
lutions reported in this present work remain subjects
continuing investigation in three dimensions.

IV. SUMMARY

The present fully converged solutions of the compl
nonlinear viscous compressible conducting continuum eq
tions establish the coexistence of several independent
solutions, all for the same boundary conditions and the sa
constitutive model. Because they were discovered from r
domly selected initial conditions, we know that the basins
attraction of these continuum solutions have compara
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measures. No doubt the boundaries separating such b
are sufficiently complicated to frustrate any useful analys
Unlike equilibrium thermodynamic states these nonequi
rium flows cannot be precisely compared with regard to
sensible definition of ‘‘stability’’ because there is no rever
ible path connecting them.

It is nevertheless possible to compare various aspect
the flows which have some intuitive connection with stab
ity. Such properties include~i! the kinetic and internal ener
gies associated with the flows;~ii ! the heat fluxes, equivalen
to a knowledge of the internal entropy production;~iii ! the
growth rates of stationary modes, as measured from infi
tesimal seeds. The first two of these properties suggest
relative stability of the six-roll pattern, while the growth ra
favors the four-roll pattern. The details available from co
puter simulations may eventually lead to correlations amo
these, and other, measures of relative stability. The w
begun here is a modest start.

There is a logical small-scale–to–large-scale hierarchy
simulation techniques, beginning with microscopic molec
lar dynamics, continuing through smooth-particle appli
mechanics, with its fluctuations, and concluding w
fluctuation-free continuum mechanics. The instabiliti
which characterize macroscopic turbulence and other flo
can be followed through this hierarchy. The degenera
found here suggests strongly that the strange attractors w
are pervasive in nonequilibrium time-reversible atomis
simulations @12# eventually partition large-system phas
spaces into disjoint parts. Simultaneously the time reversi
ity and the ergodicity which characterize the smallest n
equilibrium systems are lost as the continuum limit is a
proached.

FIG. 2. Smooth-particle two-roll flow for a three-dimension
ideal gas with Ra540 000 and Prandtl number unity. This solutio
uses 36318336523 328 smooth particles. The weighting functio
is Monaghan’s, as descibed in Ref.@5#, with a range equal to
2.5(V/N)1/3. Contours of (vx

21vy
21vz

2)1/25$0.03,0.06,0.09,0.12%
andT5$0.8,1.0,1.2% are shown.
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